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Abstract
The local lattice distortions around a Tl+-dimer substitutional impurity in
NaI and KI have been investigated by using a mixed ab initio/parametrized
methodology. One important conclusion of the work is that an explicit
consideration of these distortions up to at least the first four coordination
shells of ions around the impurity is needed in order to achieve a converged
result for the first- and second-shell distortions. After describing the lattice
distortions induced by both D4h and D2h configurations, we analyse their relative
stability by calculating the defect formation energies. It is found that the D4h

configuration is lower in energy for both crystals, but the energy difference is
so small in the case of the NaI host lattice that the two configurations can be
considered degenerate for all practical purposes. It is also found that inclusion
of polarization interactions is crucial in the stabilization of the defect in NaI.

1. Introduction

The local distortions induced by substitutional impurities in ionic crystals are important
quantities as they determine the crystal field exerted on the impurity by the host lattice, and
thus the specific absorption/emission properties of the system [1]. While the optical properties
of these doped crystals are directly accessible to experiment, the structural lattice distortions
are much more difficult to determine [2–4]. Thus, reliable theoretical calculations are an ideal
complement to experimental studies in this field [5].

When the impurity concentration is low, the interaction between different substitutional
impurities can be neglected, and the lattice distortion induced by a single isolated impurity is
all that needs to be considered. The most important factor affecting the lattice distortions in
that case is the charge state of the impurity:

(a) If the substitutional impurity ion is isovalent with one of the lattice ions, the distortions
are mainly determined by the mismatch (packing) effect arising from the different sizes
of the ions involved [6–8].

0953-8984/01/358015+15$30.00 © 2001 IOP Publishing Ltd Printed in the UK 8015

http://stacks.iop.org/cm/13/8015


8016 A Aguado

(b) If the substitutional impurity carries a formal charge different from that of the substituted
lattice ion, then Coulomb electrostatic effects are more important. Moreover, charge
compensation usually requires the creation of nearby lattice defects around the impurity,
which complicates the analysis of the structural distortions quite a bit [9, 10].

With increasing concentration of the dopant, the interaction between impurities centred
on different lattice sites can no longer be neglected, and eventually aggregation of impurity
centres occurs, leading to the formation of dimer centres, trimer centres etc. The dimer
centres of impurity ions with the ns2 outer electronic configuration have been considered
in detail by Tsuboi and Jacobs [11]. They lead to new, specific absorption/emission lines
that can be difficult to resolve experimentally due to the considerable overlap with the lines
arising from the isolated impurity centres, whose concentration is always higher. Nevertheless,
experimental reports on the optical properties of these dimer centres in different alkali halide
host lattices have been published throughout the years [12–26]. More complicated aggregate
centres involving ns2 substitutional ions have also been observed [27–30]. Knowledge of just
the absorption/emission properties does not permit one to make definite statements about the
geometric structure of the defect complex, however. Two different configurations are possible
in principle: (a) the D2h configuration, in which the two impurity ions are nearest-neighbour
cations along the (110) crystallographic axes; (b) the D4h configuration, where those two
impurity ions are next-nearest-neighbour cations lying along the (100) crystallographic axes.
There has been a long and controversial debate regarding which configuration is energetically
more stable. Experimentally, some insight into this problem can be gained by measuring the
azimuthal polarization dependence of the luminescence. In this way, some authors [31–33]
have claimed to have found enough evidence to support a D4h ground-state configuration of
the dimer centres in NaI, KCl and KI, while some others [16, 34–37] have interpreted their
experiments in terms of a D2h defect configuration in KBr, KI and RbI. Tsuboi has pointed
out that his latest results [26, 35, 36] do not exclude the possibility of D4h defect centres. The
point is that the specific luminescence of D4h centres is hard to observe because, since the
Tl+ cations are less perturbed compared to the D2h configuration, the optical lines overlap to
a larger extent with those arising from the isolated impurity centres, and so are more difficult
to resolve. In summary, the feeling is that the situation is far from being clear at the moment.
From the theoretical side, the author is aware of just one, very recent, article, by Pascual,
Barandiarán and Seijo [38], dealing with the lattice distortions induced by both Tl-monomer
and Tl-dimer centres in KCl. Thus, there is still a strong need for first-principles calculations
to help in disentangling this interesting structural problem. This will be the main goal of the
present contribution.

With these ideas in mind, we have employed the ab initio perturbed-ion (aiPI) model
[39–44] to study the lattice distortions induced by a substitutional Tl+ dimer in NaI and KI.
The model has been enlarged by inclusion of a parametrized potential model accounting for the
effects of dispersion and polarization interactions. The mixed ab initio/semiempirical model
thus obtained is a very convenient and powerful tool for modelling impurity systems, as it has
the following desirable properties:

(a) The local region around the impurity can be modelled by a large active cluster embedded
in a quantum-mechanical description of the surrounding crystalline lattice [45].

(b) The computational cost of the model increases just linearly with the number of symmetry-
inequivalent ions included in the active cluster [46], allowing for the structural relaxation
of several coordination shells of ions with a reasonable effort.

(c) The connection between the local region around the defect in which structural rearrange-
ments are important and the frozen crystalline environment is made through a smooth
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interface formed by fixed ions whose wavefunctions are allowed to self-consistently
relax [47, 48].

(d) The systematic errors of the model are estimated by performing parallel cluster calculations
on the pure crystals [47, 48].

The remainder of this paper is organized as follows. In section 2 we describe the active
clusters which have been used to model the doped systems, together with a description of the
energy model employed. In section 3 we present and discuss the results of the calculations
and section 4 summarizes the main conclusions.

2. Cluster model

The aiPI model is a particular application of the Hartree–Fock version of the theory of electronic
separability of Huzinaga and co-workers [49, 50] to ionic solids, in which the basic building
blocks are reduced to single ions, and was first developed for the study of perfect crystals [39].
In brief, the crystal wavefunction is assumed to be an antisymmetrized product of mono-
centre ionic wavefunctions. The dispersion interactions, coming from the interionic electron
Coulomb correlation, are neglected in this approximation and will have to be reintroduced
later on. The variational principle applied to the Hamiltonian operator, together with the
restriction (introduced by means of a Lagrange multiplier) that the ionic wavefunctions obey
strong orthogonality conditions [51], leads to the following set of Fock-like equations, one for
each active ion R in the crystal:

HR
eff |ψR〉 = EReff |ψR〉 (1)

where the effective Hamiltonian is a sum of one-electron and two-electron contributions:

HR
eff =

NR∑

i=1

hReff (i) +
∑

1�j<i�NR
r−1
ij (2)

with

hReff (i) = T (i)− ZRr−1
iR +

∑

S �=R
[V Senv(i) + PS(i)] (3)

V Senv(i) = −ZSr−1
is + V SC (i) + V SX(i). (4)

Thus, the effective Hamiltonian for ion R contains, apart from the usual intra-atomic terms
(electronic kinetic energy, attraction of the electrons of ion R to the nucleus of ion R and
Coulomb, exchange and correlation interactions between electrons of ion R), an additional
environmental potential taking account of both classical (Coulomb) and quantum (exchange
and orthogonality) interactions between the electrons of ion R and the electrons and nuclei of the
(frozen) environment. The electronic Coulomb interaction term V SC (i) is usefully decomposed
into two terms, one accounting for the Madelung interaction between point-like formal charges
and the other accounting for the correction to that Madelung term arising from the finite extent
of the ionic electron densities (this term has been called a penetration term by Pyper) [52].
Finally, it has been shown that the expectation value of the lattice projection operator PS(i)
(the operator that enforces the strong-orthogonality conditions on the orbitals centred in two
different ions) can be identified with the overlap repulsive energy [53]. PS(i) and V SX(i) are
the only operators that involve an interchange of electronic labels between electrons on two
different ions, and therefore their sum can be identified with the permutation term introduced by
Pyper [52]. This completes the description of the electronic interactions, to which the nuclear–
nuclear term is added in order to obtain the total effective energy EReff . The aiPI calculations
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for a perfect crystal consist in the iterative resolution of equation (1) in the frozen environment
provided by the solutions of the previous cycle, in such a way that full ion–lattice consistency
is achieved at the end of the process. When that self-consistent process is finished [54], the
outputs are a set of consistent crystal wavefunctions, one for each inequivalent ion in the
lattice, and the effective energies of each of the ions. These effective energies can be usefully
decomposed into two terms:

EReff = ERre + ERint (5)

where the interaction energy term contains all the pairwise interactions (Madelung, penetration
and permutation) and the rearrangement term accounts for the many-body energy contribution
associated with the compression of the ion by the environment (it is a repulsive contribution on
account of the kinetic energy increase experienced by the electronic cloud), and incorporates
the intraionic electron correlation, estimated by employing the Coulomb–Hartree–Fock model
[55–57]. The model could be useful in the parametrization of the so-called compressible-ion
models (CIM) [58–60], with a very modest computational effort. To obtain the total energy of
the crystal, one just has to avoid double counting of the interaction energies:

Ecrystal =
∑

R

(ERre + (1/2)ERint ). (6)

The application of the aiPI model to the study of impurity centres in ionic crystals makes
use of the cluster approach, and has been fully described in references [46–48]. The basic
assumption of a cluster approach is that all the relevant physico-chemical changes induced by
the introduction of a substitutional impurity into the host lattice are short ranged and therefore
localized in a finite region around the impurity. Correspondingly, the doped crystal is divided
into two regions, which we call C (the cluster) and L (the lattice). The C region contains
the impurity and those lattice ions around it that are supposed to be directly affected by the
presence of the impurity. The L region is formed by all those lattice ions outside the C region.
When using the cluster approach, one has to provide accurate enough descriptions for both
regions, as well as for the interactions between those regions. Within the aiPI methodology,
this is achieved in the following way: the region L is further divided into two regions Lnear

and Lfar. The ions in the region Lnear are represented by frozen wavefunctions extracted from
a reference aiPI calculation performed on the corresponding pure crystal. These ions act on
the ionic electron densities of the ions in region C through both classical and quantal lattice
interactions, as described in the previous paragraph. The Lnear region extends up to a distance
such that the quantal contributions to the effective energy of region C are negligibly small (in
practice less than 10−6 Hartree). Lattice ions located at longer distances act on region C just
through the point-like Madelung interaction. Thus, the ions in this region Lfar are represented
by simple point charges, until a good representation of the Madelung potential inside the C
region is achieved. Within the C region, called the active cluster, the aiPI equations as described
above are explicitly solved, including the effect of the frozen environmental potential provided
by the L region. Thus, at the end of the self-consistent procedure, an ion–ion consistency
is achieved within the active cluster, and at the same time each ionic wavefunction in set C
is consistent with the frozen description of the surrounding lattice. To calculate the lattice
distortions, the active cluster is also divided into two smaller subsets, which we call C1 and
C2. Both the wavefunctions and the positions of all ions within region C1 are allowed to relax.
In contrast, only the wavefunctions of the ions in region C2 are allowed to self-consistently
adapt to the changing potential. In practice, region C2 is formed by all those ions that are
nearest neighbours of the ions in region C1 and are not already included in C1. Thus, region
C2 provides a smooth interface of fixed but electronically deformable ions linking the C1

region, where distortions are important, with the frozen lattice, and its introduction has been
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shown to be necessary in order to obtain acceptable distortions [6–10]. The only region that
still has to be described is thus C1. In this work, we have chosen to include within C1 the two
Tl+ impurity cations, plus their first four coordination shells, plus their seventh coordination
shell. These clusters contain 58 and 61 ions for the D2h and D4h defects, respectively. The
corresponding number of ions within the total active clusters (C1 plus C2 subsets) are 160 and
163. On the technical side, we have used large STO basis sets for the description of the ions, all
taken from Clementi–Roetti [61] and McLean–McLean [62] tables. All calculations have been
performed by employing the experimental lattice constants [63] to describe the geometrically
frozen part of the crystals.

In the present version of the aiPI code, the ion–electron densities are forced to remain
spherically symmetric, which is correct for the high-symmetry environment experienced by
the ions in the pure crystals but not for the distorted configurations found in the doped crystals.
Thus, we have enlarged our energy model by inclusion of a parametrized potential model
description of polarization interactions. Specifically, we have employed the polarizable-ion
model (PIM) devised by Madden and co-workers [64,65], as explained in previous publications
[66,67]. This is a model that allows for a proper representation of both asymptotic and short-
range effects on the polarizabilities. Its parametrization has been performed by employing
as input the results of highly accurate ab initio calculations, as opposed to experimental
input. Moreover, careful parametrization strategies were employed to ensure that no mixing
of different physical effects occurs in each separate parameter, improving thus on the results
of shell-model calculations. This is reflected in the fact that parameters for closely related
materials can be deduced from those for a reference system by simple scaling arguments
involving ion radii [65, 68]. As the in-crystal anion polarizabilities were obtained from
experimental crystal values, following reference [69], the procedure should be highly reliable.
The short-range parameters appropriate to our systems were obtained through the scaling
procedures validated in references [65, 68].

As we have already stated, dispersion interactions are also absent from the present
methodology. These can be included in our energy model by following the methods described
by Pyper [70, 71]. Specifically, the dipole–dipole C6-coefficient is obtained from the ionic
polarizabilities through the Slater–Kirkwood formula [72]. This has been shown by Pyper [70]
to be the most reliable method for obtaining such coefficients.

Now we discuss the method employed to obtain the lattice distortions. The total number of
structural parameters involved in the optimization of the effective energy of the active cluster
is quite large (specifically, 17 for the D4h defect and 31 for the D2h defect—see the next
section). These numbers are imposed by forcing the active cluster to have the exact symmetry
of those two group points, as a consideration of a larger number of parameters would be
computationally troublesome. Searching for the global energy minimum in hyperspaces of
such high dimensionalities is far from trivial, and a direct search would be computationally
very expensive. We have thus adopted a stepped procedure, which consists of iteratively
relaxing each coordination shell. In a first step, only the positions of those ions in the first
coordination shell are allowed to vary. Then those ions are fixed at their optimal positions and
optimization of the second coordination shell proceeds. When the seventh coordination shell
has been relaxed, the procedure starts again with the relaxing of the first one. This relaxation
process is stopped when the values of all 17 (31) parameters in a new cycle are the same as
those of the previous cycle, up to a given tolerance. It has been found that only four external
cycles are needed in order to obtain converged distortions. To acquire reasonable confidence
that we have really found the global minimum, we have given several random displacements
to the ions (starting from the optimized configuration) and checked that the ions always come
back to the same minimum. An interesting aspect of this stepped procedure is that one can
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analyse the importance of the inclusion of the geometrical relaxation of additional shells in
obtaining a converged value for the distortion of the first shell, which is the only one included
in the vast majority of ab initio calculations on doped crystals. The specific values of the
distortions have been calculated taking account of the nonperfect self-embedding consistency
of the model [6–10]:

 Ui = Ui((Tl+)2:AX)− Ui(A+:AX) (7)

where Ui((Tl+)2:AX) are the equilibrium values adopted by the structural parameters
employed to characterize the geometry of the active cluster (see the next section) in the doped
crystal, and Ui(A+:AX) are the equilibrium values adopted by those same parameters when
describing the pure crystal with the same cluster model as was employed to describe the doped
crystal. Thus, any inaccuracy related to a wrong description of the pure crystal (always very
small in practice) is cancelled out in the difference.

We finish this section with a brief discussion of the expected reliability of the distortions
obtained. We are employing a mixed ab initio/parametrized model, which implies that our
representation of the several interactions cannot be as accurate as that obtained from purely
ab initio models. The most important short-range quantal terms are, however, calculated with
an ab initio code. The only parametrized terms (polarization and dispersion) were obtained by
employing parameters extracted from highly reliable ab initio calculations, and introducing
those parameters into well tested models for those two interactions. Thus, our opinion is that
the representation of these two terms is highly accurate. Nevertheless, there still remain three
possible sources of error:

(a) The calculations are not relativistic. Although relativistic effects are known to have an
important influence on the optical spectra, we do not expect them to have a marked effect
on the lattice distortions.

(b) Although we have introduced the electrostatic polarization energy through the PIM model,
the ionic electron densities continue to be spherical. In distorted environments, these ionic
electron densities are expected to assume aspherical shapes, which can have an effect on
the short-range repulsive overlap energies. An aspherical ion model (AIM) accounting
for such effects has also been introduced by Rowley et al [59]. These authors find that
AIM effects are only important for the description of some dynamical properties of ionic
metal oxides, while their effect on the static properties of alkali halides is expected to be
negligibly small.

(c) Were the effects described in (a) and (b) be included in our model, we would be working
with a complete ionic description of the system. Covalent interactions, associated with
charge transfer between the ions, would continue to be neglected. It is the author’s view,
however, that an ionic description (that is, with any charge transfer neglected) of the
systems under consideration should be essentially correct.

To support these expectations, we offer a comparison between the results obtained previously
by the author on the first-shell distortion around a Tl-monomer centre in NaI, NaCl and
KCl [8], and those obtained by other authors employing more involved electronic structure
calculations [38, 73, 74]. Pascual et al [38] obtained an expansion of between 2% and 3% for
KCl:Tl+ (depending on the introduction or neglect of lattice relaxation and polarization effects),
which is essentially the same as that obtained by the author in reference [8]. Similarly, the
expansion of 8% obtained for NaCl:Tl+ in reference [73] compares very well with that obtained
in reference [8], namely about 6%. Finally, the 5% expansion found by Barriuso et al [74] in
NaI:Tl+ compares equally well with the aiPI value of about 6%. This last value is given here
for the first time; it was obtained employing exactly the same cluster model as that described
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in reference [8]. The quantitative value given in reference [6] for that expansion, namely
1%, was wrong due to an inaccurate representation of the projection operator enforcing the
ion–lattice orthogonality [75], which was corrected in all subsequent publications. The main
qualitative result of reference [6], namely that the lattice distortion induced by the impurity
affects several coordination shells around it, continues to be valid in our opinion, however.
In summary, we believe we have shown that our results can compete in accuracy with those
obtained from more involved electronic structure calculations—even more so if we realize that
we can take advantage of the good scaling properties obtained after simplifying the energy
model and consider large active clusters, with an explicit consideration of the relaxation of
several coordination shells.

An alternative accuracy check is provided by a consideration of the pure crystals NaI,
KI and TlI. If the method is able to provide accurate values for the interionic distances of
these three crystals, then we expect the description of the impurity systems to be similarly
accurate. The aiPI equilibrium distances for the rock-salt phase of the alkali halide crystals
are d(NaI) = 3.236 Å and d(KI) = 3.533 Å, in very good agreement with the experimental
results [63]. Thus, fixing the interionic distances of the frozen environment to the experimental
distances (see above) is a good approximation. TlI crystallizes at low temperature in an
orthorhombic Cmcm structure, with cell parameters a = 4.582 Å, b = 12.92 Å and
c = 5.251 Å. The ion positions within the unit cell are given by (0, u, 1/4), (0,−u, 3/4),
(1/2, u+ 1/2, 1/4) and (1/2, 1/2 −u, 3/4), with u(I) = 0.1333 and u(Tl) = 0.392 [76]. The
results from our hybrid method are a = 4.603 Å, b = 12.98 Å, c = 5.286 Å, u(I) = 0.1318
and u(Tl) = 0.3931. The agreement is seen to be very good, which shows that the covalent
effects are not very important even for this low-gap material. The cell volume obtained is
slightly larger than the experimental one. We ascribe this to our neglect of relativistic effects,
which are known to induce a slight contraction of interionic distances in compounds of this
type [77–80]. This alternative test confirms the conclusions in the previous paragraph and
gives support to the credibility of our results.

3. Results and discussion

3.1. D4h and D2h distortions

The results for the lattice distortions induced by the D4h centre are shown quantitatively in
table 1 (we do not show explicitly the seventh-shell distortions because these are always very
small). For the first and second coordination shells, they are also shown schematically in
figure 1. Note that, due to the symmetry of the defect, the origin has been placed in the
iodide anion bridging the two Tl+ impurities. During the optimization process, this anion is
fixed at the (0, 0, 0) lattice site without loss of generality. In general, we can see that the
first shell of anions expands as a result of the introduction of the (Tl+)2 dimer, by an amount
which is larger in NaI as compared to KI. This is the expected behaviour, as the mismatch ion
size effect is more acute in NaI than in KI. There are additional differences between the two
systems: in NaI, the Tl+–I− distances along the (001) direction are approximately the same,
and smaller than the Tl+–I− equilibrium distances along (100) and (010) directions; for KI, in
contrast,  U2 is approximately equal to  U1, and so the two iodide ions located at (0, 0, 1)
crystallographic sites do not experience any expansion at all, while the expansions experienced
by all other first-shell anions are approximately the same. In both crystals, the eight iodide
anions located at (1/2, 0, 1/2) and equivalent lattice sites also experience small negative out-
of-plane distortions, that help to further reduce the Tl+–I− overlap repulsion. These first-shell
distortions are strongly coupled to the distortions experienced by the other coordination shells,
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Table 1. Lattice distortions (in Å) of several coordination shells around the D4h Tl+-dimer defect
in NaI and KI. The quantities Ri , where they appear, are defined as Ri = √

2 Ui ; that is, they
measure polar distances. The optimization parameters, Ui , together with their pure crystal values
in crystallographic units, are shown explicitly, as well as the number of symmetry-equivalent ions
in each coordination shell.

Coordination shell Ionic site Degeneracy Pure crystal value Distortion NaI KI

First (0, 0, U1) 2 U1 = 1/2  U1 0.109 0.049
(0, 0, U2) 2 U2 = 1  U2 0.208 0.046
(U3, 0, U4) 8 U3 = 1/2  U3 0.168 0.043

U4 = 1/2  U4 −0.021 −0.025

Second (U1, 0, 0) 4 U1 = 1/2  U1 0.135 0.077
(U2, 0, U3) 8 U2 = 1/2  U2 0.099 0.072

U3 = 1  U3 0.122 0.092
(U4, U4, U5) 8 U4 = 1/2  R4 0.134 0.109

U5 = 1/2  U4 0.015 −0.001

Third (U1, U1, U2) 8 U1 = 1/2  R1 −0.084 −0.096
U2 = 1  U2 −0.064 −0.084

(U3, U3, 0) 4 U3 = 1/2  R3 −0.097 −0.098

Fourth (0, 0, U1) 2 U1 = 3/2  U1 0.082 0.072
(U2, 0, U3) 8 U2 = 1  U2 0.086 0.070

U3 = 1/2  U3 0.034 0.038

as we have discussed in detail in a previous publication [8]. As an example, if we just allow
for the displacement of the first coordination shell of ions (corresponding to the first step of
our optimization procedure—see the previous section), the Ui distortions (in Å) in KI:(Tl+)2

are found to be 0.010, −0.015, −0.013 and −0.030 for i = 1, 2, 3 and 4, respectively. These
values are very different from the converged ones shown in table 1. Sometimes even the sign
of the distortion is erroneously predicted. A consideration of lattice relaxation effects of a
larger number of coordination shells is thus mandatory for these systems.

The size mismatch effect also increases the short-range repulsions from the lattice cations
in the second coordination shell, which expands in response to this. Again this expansion
is larger in NaI as compared to KI. For those cations located at (1/2, 0, 1) and equivalent
sites, the expansion is larger along the z-axis. We can easily understand that this is due to
a coupling with the first-shell distortion. Specifically, the expansion of the first-shell anions
at (1/2, 0, 1/2) and equivalent sites reduces the screening of the Coulomb repulsion with the
cations located at (1/2, 0, 0) and equivalent sites (see figure 1). To confirm this expectation,
one can perform a hypothetical calculation of the distortion including only the second shell
and not the first-, third- and fourth-shell displacements. When this is done, the difference
between  U2 and  U3 is almost negligible. The anions forming the third coordination shell
experience a contraction, which is the same result as was obtained in reference [8] for the Tl+-
monomer centre in alkali halides. The distortion of this shell is almost isotropic, so it is not
too much affected by the reduction of symmetry. Finally, the fourth coordination shell, formed
by cations, experiences an appreciable expansion according to our model, but considerably
smaller than the first-shell expansion, as expected. In order to obtain a converged value for the
fourth-shell distortions, the inclusion of seventh-shell distortions was mandatory. Specifically,
a much larger (approximately twice as large) fourth-shell expansion is predicted when fixing
the positions of the ions in the seventh coordination shell to their pure crystal values. This is
analogous to the first-shell situation discussed in the previous paragraph.
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Figure 1. A qualitative illustration of the first- and second-shell distortions around the D4h Tl+-
dimer defect in NaI. Large filled balls are Tl+ cations, large empty balls are I− anions and small
shaded balls are Na+ cations. To help with the visualization, not all second-shell cations are
explicitly shown. The notation U(m, n) specifies the distortion  Un experienced by the ions in
the mth coordination shell (see table 1 for quantitative values).

The lattice distortions induced by the D2h dimer centre are shown in table 2 and figure 2, in
an analogous way to that employed for the D4h centre. Due to the symmetry properties, we have
located the origin of the active cluster at the (1/4, 1/4, 0) crystallographic position in this case.
Now the two Tl+ impurities are nearest-neighbour cations along the (110) crystallographic axes,
and their direct overlap interactions become important. As a result of these, an increase of
the Tl+–Tl+ distance by roughly 0.06 Å with respect to the pure host lattice value is observed,
which is quite independent of the specific pure crystal. This means that the equilibrium Tl+–
Tl+ distance in NaI is smaller than that found in KI by a factor of ≈a(NaI)/a(KI), with a the
lattice constant of the respective crystal. The two first-shell anions at (U2,−U2, 0) sites expand
appreciably along the (11̄0) crystallographic axes in NaI, but the corresponding expansion is
almost negligible in KI. The other eight first-shell anions similarly experience expansions
which are always larger in the case of NaI. Note that, for both crystals, the expansion is largest
for the anions at (U3, U4, 0) and smallest for those located at (U2,−U2, 0), this trend correlating
with the expansion of the two impurity cations. Also, a significant expansion along the (110)
axes of the anions located at (U5, U5, U6) is observed in NaI. This displacement helps to keep
those anions almost on top of the Tl+ cations along the (001) directions. This is not observed
in the case of KI. By way of a reference, we quote here again the values obtained for the
first-shell displacements  Ui around the D2h defect in KI when only that shell is allowed to
relax. They are (in Å) −0.010, 0.004, −0.019, 0.01, 0.039 and −0.018 for i = 1, 2, 3, 4,
5 and 6, respectively. As we can see, a contraction of the Tl+–Tl+ distance (with respect to
the pure crystal value) is predicted, together with corresponding contractions of some of the
first-shell iodides. Similarly to the D4h case, we find that relaxation of a larger number of shells
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Table 2. Lattice distortions (in Å) of several coordination shells around the D2h Tl+-dimer defect
in NaI and KI. The quantities Ri , where they appear, are defined as Ri = √

2 Ui ; that is, they
measure polar distances. The optimization parameters, Ui , together with their pure crystal values
in crystallographic units, are shown explicitly, as well as the number of symmetry-equivalent ions
in each coordination shell.

Coordination shell Ionic site Degeneracy Pure crystal value Distortion NaI KI

First (U1, U1, 0) 2 U1 = 1/4  R1 0.055 0.057

(U2,−U2, 0) 2 U2 = 1/4  R2 0.203 0.009

(U3, U4, 0) 4 U3 = 3/4  U3 0.186 0.043

U4 = 1/4  U4 −0.010 −0.016

(U5, U5, U6) 4 U5 = 3/4  R5 0.047 0.008

U6 = 1/2  U6 0.154 0.032

Second (U1, U1, 0) 2 U1 = 3/4  R1 0.150 0.117

(U2,−U3, 0) 4 U2 = 1/4  U2 0.075 0.062

U3 = 3/4  U3 0.146 0.102

(U4,−U4, U5) 4 U4 = 1/4  R4 0.061 −0.007

U5 = 1/2  U5 0.142 0.075

(U6, U7, U8) 8 U6 = 3/4  U6 0.119 0.093

U7 = 1/4  U7 0.004 —

U8 = 1/2  U8 0.092 0.073

Third (U1, U1, U2) 4 U1 = 3/4  R1 −0.095 −0.112

U2 = 1/2  U2 −0.059 −0.071

(U3,−U4, U5) 8 U3 = 1/4  U3 −0.047 −0.055

U4 = 3/4  U4 −0.048 −0.084

U5 = 1/2  U5 −0.044 −0.066

Fourth (U1, U2, 0) 4 U1 = 5/4  U1 0.083 0.069

U2 = 1/4  U2 0.012 0.007

(U3, U3, U4) 4 U3 = 1/4  R3 −0.031 −0.033

U4 = 1  U4 0.077 0.064

is an important ingredient in obtaining converged first-shell distortions. In general, the second,
third and fourth coordination shells relax following the same patterns as were described for
the D4h case.

Next we would like to analyse here the convergence of our distortions. As we have already
stated, the distortions in each shell are strongly coupled to those of other shells. The strongest
and therefore most important coupling is found to be that between first and second shells.
Thus, our opinion is that at least those two shells should be included in cluster calculations of
defects. We have explicitly checked, by including relaxation of a larger number of ions along
(110) crystallographic directions, that the distortions presented for the second shell are well
converged. We have not found, either, substantial modifications in the third-shell distortions
when including more ions along (111) directions. Another important coupling is that between
distortions along (100) directions: it is necessary to include fourth-shell distortions in order
to obtain converged first-shell distortions; similarly, it is necessary to include seventh-shell
distortions in order to obtain converged fourth-shell distortions. As the seventh-shell distortions
are themselves quite small (below 0.02 Å), we think that the distortions along (100) directions
do not propagate beyond that shell.

To the best of the author’s knowledge, there is only one other first-principles electronic
structure calculation dealing with the distortions induced by a Tl+-dimer centre, in that case in
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Figure 2. A qualitative illustration of the first- and second-shell distortions around the D2h Tl+-
dimer defect in NaI. Large filled balls are Tl+ cations, large empty balls are I− anions and small
shaded balls are Na+ cations. The notation U(m, n) specifies the distortion  Un experienced by
the ions in the mth coordination shell (see table 1 for quantitative values).

a KCl host lattice [38]. Due to the different host materials considered, it is not possible to make
a quantitative comparison between the two works. At a qualitative level, the main difference
found in reference [38] between the KCl distortions around D4h and D2h defect configurations
is that the Tl+–Tl+ distance expands in the first case and contracts in the second case, compared
to the K+–K+ distance. The contraction of the Tl+–Tl+ distance in the D2h centre is explained
by the fact that expansion of the two anions at (U2,−U2, 0) allows the Tl+ cations to approach
each other by reducing the electron cloud repulsion. In the iodides considered in this work, we
always obtain an expansion of the Tl+–Tl+ distance, irrespective of the defect configuration.
Nevertheless, using the same argument as was advanced by Pascual et al we expect the approach
of the two Tl+ cations along the (110) direction to be substantially impeded in NaI and KI as
compared to KCl, simply because of the much larger size of iodide anions compared to chloride
anions. Moreover, we obtain a smaller Tl+–Tl+ equilibrium distance in NaI as compared to
KI, correlating with a larger expansion of the two anions at (U2,−U2, 0). Thus, the qualitative
trends seem to agree with those found by Pascual et al [38].

3.2. Relative stabilities of D4h and D2h defect configurations

To analyse the relative stability of the two different defect configurations at conditions of low
pressure and temperature, we calculate their respective formation energies, given in terms of
the internal energy difference for the following solid-state exchange reaction:

(A+:AX)s + 2Tl+
g � ((Tl+)2:AX)s + 2A+

g (8)

where the subscripts s and g refer to solid and gas phases, respectively. In order to take into
account possible (electronic) lattice polarization effects, we have enlarged the active clusters
with a PIM description of additional ions fixed at their lattice positions. An active cluster of
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1000 ions, centred in the defect region, has been considered. For this cluster size, the induced
dipoles on the more distant ions are already negligibly small, so lattice polarization effects do
not extend beyond this relatively small region for the isovalent defects that we are considering.
We show in table 3 the different contributions to the formation energies of the defects and
to their relative stabilities. A negative energy contribution acts to stabilize the defect, while
a positive energy contribution tends to destabilize it. As the Madelung energy is minimized
(for a given lattice parameter) by the perfect crystal geometry, the Coulomb energy always
tends to destabilize the defects. The larger the lattice distortion induced by the impurity, the
larger this energy contribution. Correspondingly, it is always larger for the NaI host lattice,
as compared to KI. For both host lattices, we can also see that the distortion is greater in
the D4h than in the D2h configuration. Significant differences are seen in the contribution of
short-range repulsion interactions to the formation energies of the Tl+-dimer defect. While in
KI this contribution tends to stabilize the defect, the opposite holds for NaI. The reason for this
is that the mismatch effect is much more important in NaI, and the calculated lattice relaxation
around the defect is not efficient enough in reducing the overlap repulsions. In KI, in contrast,
the mismatch effect is much smaller and lattice relaxation induces a decrease in the overlap
repulsions which is enough to stabilize the defect. For both crystals, the repulsive contribution
to the relative stability of the two defect configurations opposes that of the Coulomb interaction.
The inclusion of dispersion and polarization interactions in the calculation of the formation
energy is therefore crucial in the case of NaI, as the defect would be predicted to be unstable
at 0 K if one omitted these terms. Concerning the relative stability of the two configurations,
both dispersion and polarization interactions tend to stabilize the D4h defect, by small but
significant amounts, given the large cancellation found between Coulombic and short-range
repulsive interactions. In the case of the (short-ranged) dispersion interactions, this is easily
rationalized: the bonds contributing the most to the dispersion are the Tl+–I− bonds, and
in the D4h defect one more Tl+–I− bond is formed in comparison with the D2h defect. The
polarization contribution to the energy of the pure crystals is strictly zero, so its contribution
to the formation energy of the defects is highly relevant, and can be considered another (more
indirect) measure of lattice distortion. On adding all the different energy contributions, the
D4h configuration is lower in energy for both crystals. However, in the case of NaI, those two
configurations are so close in energy that they should be considered instead as degenerate for
all practical purposes.

Table 3. Different contributions to the formation energies and to the relative stabilities of D4h and
D2h configurations of the Tl+-dimer impurity in NaI and KI. The relative stabilities are quoted, so a
negative contribution implies a higher stability for the D4h configuration. All quantities are in eV.

NaI D4h D2h Difference KI D4h D2h Difference

Coulomb 0.57 0.49 0.08 Coulomb 0.44 0.42 0.02
Sr repulsion 2.78 2.88 −0.10 Sr repulsion −0.62 −0.42 −0.020
Dispersion −2.40 −2.38 −0.02 Dispersion −1.04 −1.02 −0.02
Polarization −1.57 −1.54 −0.03 Polarization −0.95 −0.94 −0.01

Total −0.62 −0.55 −0.07 Total −2.37 −1.96 −0.21

4. Conclusions

In this paper it has been stressed that computer simulations of lattice distortions induced by
substitutional impurities are likely to be significantly affected by the size of the active cluster



Local structures of Tl+-dimer substitutional impurity centres in NaI and KI 8027

employed to simulate those distortions. Specifically, it has been found that at least first-
and second-coordination-shell distortions around the defect have to be considered in order to
obtain reliable results for the distortion around a Tl+ dimer in alkali halides. To obtain full
convergence for those distortions, one also has to allow for relaxation of at least third and fourth
coordination shells. This is due to the strong coupling between the distortions experienced by
different coordination shells.

The lattice distortions around both D4h and D2h defect configurations of a Tl+-dimer
impurity in NaI and KI host lattices have been described. The results conform with the
expectation that these distortions should be greater in NaI as compared to KI, due to a larger
size mismatch effect. The relative stability of the two different configurations at zero pressure
and temperature conditions has been analysed in terms of Coulomb, repulsion, dispersion and
polarization energy components. The inclusion of dispersion and polarization is mandatory in
the case of NaI, as the consideration of only Coulomb and short-range repulsion effects predicts
the defect to be unstable. Although the theoretical predictions point towards a higher stability
of the D4h configuration in NaI, the energy difference is small enough for one to anticipate that
the two configurations can coexist under normal experimental conditions. In the case of KI,
however, the D4h configuration is energetically favoured by 0.21 eV. An interesting question
that deserves further attention is that of how entropic terms can affect the free-energy relative
stabilities at finite temperatures.
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[6] Aguado A, Ayuela A, López J M and Alonso J A 1998 Phys. Rev. B 58 11 964
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